Test Instance Generation for MAX 2SAT

Mitsuo Motoki Japan Advanced Inst. of Sci. and Tech. (JAIST)

Test Instance Generation problem

Empirical study of solvers for combinatorial opt. problem

Empirical study of solvers for combinatorial opt. problem

Test instance generator

Parameters about instance (Random bits)—

Test Instance Generator Opt. Solution

• Ideally...

Generate all instances with the opt. solution
Running time is polynomial in the length of output instance.

for NP hard optimization problem

- Unless NP=co-NP, there is no ideal instance generator.
- Why?
 - Consider the decision version (NP hard)

for NP hard optimization problem

• Unless NP=co-NP, there is no ideal instance generator.

• Why?

- Consider the decision version (NP hard)
- The random bits used in the instance generator become a witness for each "yes" instance,
- and also for each "no" instances.

parameters→Instance random bits→Generator

Yes

(I, k)

(I, Opt)

What can we do?

- Relax some requirements for instance generator
 - Can generate instances from some subset of whole instance set
 - Outputs a feasible solution instead of the optimal solution
 - (Outputs optimal solution with high prob.)
 - Running time is "exponential" instead of "polynomial"

What can we do?

- Relax some requirements for instance generator
 - Can generate instances from some subset of whole instance set
 - Outputs a feasible solution instead of the optimal solution
 - (Outputs optimal solution with high prob.)
 - Running time is "exponential" instead of "polynomial"

Our approach

- Poly. time exact instance generator
 - The set of instance generated is a subset of the whole instance set
 - The generator always outputs a test instance with the optimal solution
 - The running time is polynomial in the length of the output instance

New requirements

- The instances generated should be hard.
- How to guarantee the hardness?
 - Theoretical way
 - For any poly. time exact instance generator, the decision problem over the set of instance generated is NP

 co-NP (no more NP complete)

 How hard to distinguish the instances generated?

(Empirical study)

Poly. time exact instance generator for MAX 2SAT

MAX 2SAT

• Input: 2CNF formula

- Each clause consists of exactly 2 literals
- Each variable appears at most once in a clause
- Any clause can appear more than once
- Question: find a truth assignment s.t.
 maximizes # of satisfied clauses,
 i.e., minimizes # of unsatisfied clauses.

How hard?

- MAX SNP complete
- Decision version (Is there an assignment that satisfies at least *k* clauses?) is NP complete
- For satisfiable 2CNF formulas, poly. time solvable (2SAT is in P)
- Inapproximability upper bound:
 - 21/22 ≈ 0.955 [Håstad STOC'97]
 - 0.945 (under some unproven conjectures) [Khot, Kindler, Mossel, and O'Donnell FOCS'04]

Related works

- Probabilistic generator for MAX kSAT [Dimitriou CP'03]
 - Unique optimal solution w.h.p., $O(n^k)$ clauses
- Exact/probabilistic generator for MAX 2SAT [Yamamoto '04]
 - To characterize opt. solution, requires an expander graph
 - They use an explicit expander graph construction algorithm / a random graph

 Probabilistic generator for MAX 3SAT [MM COCOON'01]
 2005/11/15

Strategy of instance generator

- i. Choose $t \in \{0,1\}^n$ at random as the optimal solution
- ii. Combine appropriate number of minimal unsat. 2CNFs that contains exactly 1 clause falsified by *t*
- iii. Add several clauses satisfied by *t*

There is no assignment that falsifies less # of clauses than # of 2CNFs in ii.
 Thus *t* is an optimal solution

Implication graph [Aspvall, Plass, Tarjan '79]

- Transform 2CNF F into a digraph G_F
 - Each vertex corresponds to a literal
 - F contains a clause $(a \lor b) \Leftrightarrow$ \mathcal{G}_F has edge $\overline{a} \to b$ and $\overline{b} \to a$
- Contradictory bicycle
 - F is unsat. $\Leftrightarrow G_F$ has a cycle (and its complement cycle) containing x and \overline{x}

Minimal unsat. 2CNF F containing exactly 1 clause falsified by t

• W.l.o.g. assume $t=1^n$

- G_F is a (simple) contradictory bicycle
- F has just 1 clause consisting of only negative literals
- → Cont. cycle has just 1 edge from positive literal to negative literal
- Cont. cycle contains some variables as positive and negative literal
- ⇒ There is exactly 1 edge from negative literal to positive literal

Minimal unsat. 2CNF F containing exactly 1 clause falsified by t

• W.l.o.g. assume $t=1^n$

- $\mathcal{G}_{\mathcal{F}}$ is a (simple) contradictory bicycle
- F has just 1 clause consisting of only negative literals
- ⇒ Cont. cycle has just 1 edge from positive literal to negative literal
- Cont. cycle contains some variables as positive and negative literal
- There is exactly 1 edge from negative literal to positive literal
- We can divide a cont. cycle into a sequence of positive literals and a sequence of negative literals

Instance generator algorithm

Input: # *n* of vars.

- i. Let F be an empty formula
- ii. Choose $t \in \{0,1\}^n$ at random
- iii. Choose min. # $k(\geq 0)$ of unsat. clauses
- iv. for $i=1 \pm k do$

Generate a 2CNF in B_{t} at random and add to F

v. Add clauses in C_{t} to F at random

The set I of instances generated

- B_t: the set of minimal unsat. 2CNFs containing exactly 1 clause falsified by t
 C_t: the set of clauses satisfied by t
- $I = \{F \in 2CNF \mid F \text{ consists of elements} \\ of B_t \text{ and } C_t \text{ for some } t \}$
 - F∈I ⇔ min. # of unsat. clauses = max. # of cont. bicycles
 - Both t and a partition into elements of B_t and C_t become a witness of $F \in \mathbf{I}$

Hardness results

Hardness of the instances generated

- To distinguish the set I of instances generated is NP complete
 - I.e., finding an opt. solution is at least as hard as finding a sat. assign. of satisfiable 3CNFs
- To approximately distinguish the set I of instances generated is also NP hard

I is NP complete (1)

- Reduction from 3SAT
- For any 3CNF $F_{3CNF} = c_1 \wedge c_2 \wedge \dots \wedge c_m$, transform each clause $c_i = (I_{i,1} \vee I_{i,2} \vee I_{i,3})$ into
 - $b_i = (I_{i,1} \vee \gamma_{i,1}) \wedge (\overline{\gamma_{i,1}} \vee I_{i,2}) \wedge (I_{i,2} \vee \gamma_{i,2})$
 - $\wedge (\overline{y_{i,2}} \vee I_{i,3}) \wedge (\overline{I_{i,3}} \vee \overline{y_{i,1}}) \wedge (\overline{y_{i,1}} \vee \overline{y_{i,2}})$ $\wedge (\overline{y_{i,2}} \vee I_{i,1}) \wedge (\overline{y_{i,2}} \vee I_{i,1})$
 - and let $F_{2CNF} = \Lambda_i b_i$.
- Note that new variables y_{i,1} and y_{i,2} appear only in b_i

2005/11/15

FJCP 2005

		Ι	is	NP	comple	ete (2)
/ _{<i>i</i>,1}	 _{i,2}	<i>I_{i,3}</i>	Y i,1	y i,2	# of unsat.	$\overline{\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \right)}$
0	0	0	0	0	2	
0	0	0	0	1	2	
0	0	0	1	0	3	<i>Y</i> _{<i>i</i>,2} <i>Y</i> _{<i>i</i>,1}
0	0	0	1	1	2	
0	0	1	0	1	1	$\left(\overline{I_{i,2}} \right) \left(I_{i,2} \right)$
0	1	0	1	1	1	
0	1	1	*	1	1	(V_{i1}) (V_{i2})
1	0	0	*	0	1	
1	0	1	0	0	1	
1	1	0	1	*	1	
205/11/15 1	1	1	1	1	FJCP 2005	2

I is NP complete (3)

• If $F_{3CNF} = c_1 \wedge c_2 \wedge \dots \wedge c_m$ is satisfiable • F_{2CNF} has *m* contradictory bicycle • Min. # of unsat. clauses in F_{2CNF} is m • $F_{2CNF} \in \mathbf{I}$ • If F_{3CNF} is unsatisfiable F_{2CNF} has *m* contradictory bicycle • Min. # of unsat. clauses in F_{2CNF} is at least *m* +1 • $F_{2CNF} \notin \mathbf{I}$

Hardness for approximation

- If c_i ∈ F_{3CNF} is falsified by the opt. solution,
 2 clauses in b_i are falsified by corresponding assignment
 - If min. # of unsat. clauses in F_{3CNF} is k, min. # of unsat. clauses in F_{2CNF} is m+k

/ _{<i>i</i>,1}	<i>I_{i,2}</i>	/ _{i,3}	Y i,1	Y i,2	# of unsat.
0	0	0	0	0	2
0	0	0	0	1	2
0	0	0	1	0	3
0	0	0	1	1	2
0	0	1	0	1	1
0	1	0	1	1	1
0	1	1	*	1	1
1	0	0	*	0	1
1	0	1	0	0	1
1	1	0	1	*	1
1	1	1	1	1	1

Hardness for approximation

- The reduction from 3SAT is a gap reserving reduction
 - If F_{3CNF} is satisfiable, min. # of unsatisfiable clauses in F_{2CNF} is m
 - If 1/8 fraction of F_{3CNF} is unsatisfiable, min. # of unsat. clauses in F_{2CNF} is m+m/8 = 9m/8

• If we can approximate any member of I within $\frac{8m-9m/8}{8m-m} = \frac{55}{56}$, we can distinguish satisfiable 3CNFs and unsat. 3CNFs

Future works

- Improve the hardness for approximation (55/56 ≈ 0.982).
 Cf. imapproximability: 21/22≈0.955, 0.945
- Estimate appropriate values for parameters

 Analyze the distribution/expectation of # of contradictory bicycles in random 2CNFs
 Instance generator for other problems