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Test instance generator
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—>Opt. Solution

e Generate all instances with the opt. solution

e Running time is polynomial in the length of
output instance.
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for NP hard optimization problem

e Unless NP=co-NP, there is (I, k)
no ideal instance generator. :

e Consider the decision

version (NP hard) Yes No
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for NP hard optimization problem

e Unless NP=co-NP, there is
no ideal instance generator.

e Why?
e Consider the decision
version (NP hard)

e The random bits used in the
instance generator become a
withess for each "yes"
instance,

e and also for each "no"
iInstances.

parameters InsTanceJ
random bits—Generato
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What can we do?

e Relax some requirements for instance
generator

e Can generate instances from some subset
of whole instance set

e Outputs a feasible solution instead of the
optimal solution

(Outputs optimal solution with high prob.)

e Running time is "exponential” instead of
“polynomial”
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Our approach

e Poly. fime exact instance generator

e The set of instance generated is a subset
of the whole instance set

e The generator always outputs a test
instance with the optimal solution

e The running time is polynomial in the length
of the output instance
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New requirements

e The instances generated should be hard.

e How to guarantee the hardness?

e Theoretical way

e For any poly. time exact instance generator, the
decision problem over the set of instance
generated is NP N co-NP (no more NP complete)

e How hard to distinguish the instances generated?

e (Empirical study)
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Poly. time exact instance
generator for MAX 2SAT



MAX 2S5AT

e Input: 2CNF formula
e Each clause consists of exactly 2 literals

e Each variable appears at most once in a
clause

e Any clause can appear more than once
e Question: find a truth assignment s.t.

e maximizes # of satisfied clauses,
e i.e., minimizes # of unsatisfied clauses.
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How hard?

e MAX SNP complete

e Decision version (Is there an assignment that
satisfies at least A clauses?) is NP complete

e For satisfiable 2CNF formulas, poly. time
solvable (2SAT is in P)

e Inapproximability upper bound:
e 21/22 = 0.955 [Hastad STOC'97]

e 0.945 (under some unproven conjectures)
[Khot, Kindler, Mossel, and O'Donnell FOCS'04]
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Related works

e Probabilistic generator for MAX ASAT
[Dimitriou CP'03]
e Unique optimal solution w.h.p., O(#*) clauses

e Exact/probabilistic generator for MAX
2SAT [Yamamoto '04]

e To characterize opt. solution, requires an
expander graph

e They use an explicit expander graph
construction algorithm / a random graph

e Probabilistic generator for MAX 3SAT
[MM COCOON'01]
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Strategy of instance generator

i. Choose t<{0,1}” at random as the
optimal solution

ii. Combine appropriate number of minimal
unsat. 2CNFs that contains exactly 1
clause falsified by t

ii. Add several clauses satisfied by #

e There is no assignment that falsifies less #
of clauses than # of 2CNFs in ii.

e Thus # is an optimal solution
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Implication graph
[Aspvall, Plass, Tarjan '79]

A
e Transform 2CNF F into a L v 2 )06 v 6 )06 v x
digraph 6,
e Each vertex corresponds to a
literal
e F contains a clause (avb) &
G- hasedgea > b and b — a
e Contradictory bicycle

e Fisunsat. & 6-has a cycle
(and its complement cycle)
containing x and x

CATACATD
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Minimal unsat. 2CNF F containing
exactly 1 clause falsified by #

e W.lo.g. assume #=1” 6 a
e Gris a (simple) contradictory bicycle
e F has just 1 clause consisting of only
negative literals

e — Cont. cycle has just 1 edge from
positive literal to negative literal

|
: . 4
e Cont. cycle contains some variables
as positive and negative literal @

e — There is exactly 1 edge from .
negative literal to positive literal |
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Minimal unsat. 2CNF F containing
exactly 1 clause falsified by #

‘IIIIIIIIII.‘ ‘-IIIIIIIII.

e W.l.o0.g.assume #=17
e Gris a (simple) contradictory bicycle

e F has just 1 clause consisting of only
negative literals

e — Cont. cycle has just 1 edge from
positive literal to negative literal

e Cont. cycle contains some variables
as positive and negative literal

e — There is exactly 1 edge from
negative literal to positive literal
e We can divide a cont. cycle into a
sequence of positive literals and a
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sequence of negative literals
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Instance generator algorithm

Input: # nof vars.

i. Let F be an empty formula

i. Choose t< {0,1}”at random

iii. Choose min. # k(=0) of unsat. clauses
iv. for /=110 kdo

Generate a 2CNF in B,at random and add
to F

v. Add clauses in C,to F at random
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The set I of instances generated

e B,: the set of minimal unsat. 2CNFs
containing exactly 1 clause falsified by 7

e ( : the set of clauses satisfied by #

e I - {F e2CNF |F consists of elements
of B,and €, for some t}

e F el © min. # of unsat. clauses = max. # of
cont. bicycles

e Both tand a partition into elements of 8,and
C,become a withess of Fel
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Hardness results



Hardness of
the instances generated

e To distinguish the set I of instances
generated is NP complete

e I e, finding an opt. solution is at least as hard
as finding a sat. assign. of satisfiable 3CNFs

e To approximately distinguish the set I of
instances generated is also NP hard
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I is NP complete (1)

e Reduction from 3SAT

e For any 3CNF F;r=GAGA..AC,
transform each clause
cr(/v/iav/;3) into

b/:(EVY/,l)/\ /\(E\/Y/,z)
AYia V3 Ali v Yi) A
~NYia Vi) Aiaviii)
and let Foenp=A, b; .
e Note that new variables y;; and
Y, appear only in b,
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I is NP complete (2)

ol | 1

- “ ! S
s | ! ! &
Y— “ “ S
of | :
]
YJoioioio|—|lo|—|o|—|o|—
FOI0I00|O——|O(O| |
Joiociocio|lo|lo|o]| ===z




I is NP complete (3)

o If Fonr=GAGA..AC,, IS satisfiable
e F>ene has m contradictory bicycle
e Min. # of unsat. clauses in Fopnp is m
®Faenp el

o If £\ is unsatisfiable
e /- has m contradictory bicycle

e Min. # of unsat. clauses in Fq\f is at least
m+1
® Foenr € 1
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Hardness for approximation

o If ¢, Fypy is falsified gg’ogyo = o nee
by the opt. solution, oot o T 3
2 clauses in b;are oo ot T 5
falsified by corresponding [oi0oi0i1:1| >
assignment 0:i0i1{0i1 1
e If min. # of unsat. clauses 041 01 1 L

in Fcne is kmin. # of unsat. |0 114+ i 1 1
clauses in Foonp is m+k 1/0:0:*:0 1
1:0:1:0:0 1
11,0} 1;+ 1
11111111 1
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Hardness for approximation

e The reduction from 3SAT is a gap
reserving reduction

o If F3-\r is satisfiable, min. # of unsatisfiable
clauses in Fopnp IS M

e If 1/8 fraction of F5.\ is unsatisfiable, min.
# of unsat. clauses in Foofr is m+m/8 = 9m/8

e If we can ap)oroxima’re any member of I
- . 8m-9m/8 _bhh .. .
withinTg,—, - /56, we can distinguish

satisfiable 3CNFs and unsat. 3CNFs
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Future works

e Improve the hardness for
approximation (65/56 ~ 0.982).

e Cf. imapproximability: 21/22~0.955, 0.945

e Estimate appropriate values for
parameters

e Analyze the distribution/expectation of #
of contradictory bicycles in random 2CNFs

e Instance generator for other problems
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